

Enhanced External Counterpulsation for Treatment of Coronary Microvascular Dysfunction

Miyoki Kawamoto, BS, Sophia Villa, BS, Jessie Fox, PharmD, Namrita D. Ashokprabhu, BS, Danielle Tapp, PhD, Christian Schmidt, MS, Odayme Quesada, MD

Background

- · Coronary microvascular dysfunction (CMD) is an increasingly recognized mechanism in several cardiovascular diseases including angina with nonobstructive coronary arteries (ANOCA) and heart failure.
- CMD is associated with symptoms that impair functional capacity and quality of life and increased risk of major adverse cardiovascular events (MACE).
- Coronary functional angiography (CFA) is the gold standard for diagnosis of CMD and differentiates between endothelial-independent and -dependent mechanisms.
- EECP is a non-invasive treatment that involves applying external inflatable cuffs to the lower extremities to increase blood flow during diastole (diastolic augmentation and increased preload), followed by deflation during systole (decreased afterload).

Methods

- · A retrospective registry-based cohort study of patients having undergone CFA who had any abnormal finding and completed EECP treatment.
- CFA was performed using the Doppler-tipped guidewire method or pressure guidewire with a temperature sensor (Thermodilution method).

Abnormal CFA findings include:

- Endothelial-independent CMD (Coronary Flow Reserve (CFR) < 2.5 in response to intracoronary adenosine).
- Endothelial-dependent CMD (coronary blood flow (CBF) < 50% or no change in vessel diameter in response to 54mcg intracoronary acetylcholine).
- Microvascular (<90% constriction) or epicardial (>90% constriction) spasm in response to 108 mcg intracoronary acetylcholine.

EECP Treatment

• One hour per day, five days per week, for seven weeks, with patients undergoing thirty-five sessions during a typical course.

Statistical Analyses

· CCS angina class, 6MWT, and SAQ were evaluated preand post- EECP treatment. A paired Student's t-test and Wilcoxon signed-rank test were utilized as appropriate.

What is Known	What is New
EECP has demonstrated	Our objective is to
improvements in CFR	assess the efficacy of
and symptoms of	EECP treatment in a
microvascular angina in	cohort of patients having
patients diagnosed with	any confirmed Coronary
CMD by noninvasive	Functional Angiography
modalities	abnormality

33%

3%

CCS Class Pre-EECP

54%

What is New Our objective is to

CCS Class Post-EECP

13%

52%

31%

4%

- 30 patients were included in the analyses
- 77% female; 57.8±11.9 years
- Breakdown of abnormal CFA findings included:
 - 75% with endothelial-independent CMD (median CFR 2.0)

Results Cont'

- 64% with endothelial-dependent CMD
- 43% with spasm
- CCS class improved from a median of 3 to 2 post-EECP (p<0.001)
- Post-EECP, patients gained a median of 100 feet on 6MWT (p=0.001)
- Post-EECP, average improvement in SAQ score was 17.6 points (p<0.001)

Demographics	Value		Past N	N, (%)			
Sex, n (% female)	23 (77)		C	6 (20)			
Age (mean, SD)	57.8 ± 11.9		IN	5 (16)			
BMI (mean, SD)	31.3 ± 6.9		AN	21 (66)			
Number of EECP	35.0 ± 2.4		Нуре	22 (69)			
Treatments (mean, SD)			Dyslipidemia, n (%)			29 (91)	
Diagnosis to EECP	287 ±216		Dia	5 (16)			
(days) (mean, SD)			HFrEF, n (%)			2 (6)	
Endothelial	21 (75)		н	FpEF, n (%)		9 (28)	
independent CMD, n				Dro Do		nt n	
(%)			Outcome	EECP	EECP		value
Endothelial dependent CMD, n (%)	18 (64)		CCS Class,	3 (3,4) 2 (2,3)	<0.001
*Mixed Disease, n (%)	19 (63)		median (IOR)				
CFR, median (IQR)	2.0 (1.6, 2.4)		6MWT.	1200	13	300	0.001
Epicardial Spasm, n (%)	13 (43)		median (1000, (1150, (IQR) 1400) 1500)		150, 00)		
Epicardial Spasm Alone, n (%)	5 (17)		SAQ, (mean, SD)	21.1 ± 13.3	38.7	± 19.2	<0.001

dependent CMD, microvascular spasm, or epicardial spasm])

BMI: Body Mass Index; CAD: Coronary Artery Disease; INOCA: Ischemia with No Obstructive Coronary Arteries; ANOCA: Angina with No Obstructive Coronary Arteries; HFrEF: Heart Failure with Reduced Ejection Fraction; HFpEF: Heart Failure with Preserved Ejection Fraction; CCS: Canadian Cardiovascular Society; 6MWT: 6-Minute Walk Test; SAQ: Seattle Angina Questionnai

Conclusions

In patients with CMD, EECP therapy reduces symptom burden and improves exercise tolerance and quality of life. EECP should be considered as a management option in patients with CMD.

Results

Class 1

Class 2

Class 3

Class 4